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Abstract

This report investigates technical approaches to address privacy concerns associated with two innovative
applications enabled by connected vehicle systems, i.e., origin-destination (OD) flow measurement and dif-
ferentiated congestion pricing. The former is to retrieve the OD information from connected vehicles while
the latter charges congestion tolls with respect to travel characteristics of connected vehicles, e.g., origins,
destinations or paths that they traverse between their origins and destinations. Since both applications re-
quire tracking vehicles, they may violate the “anonymity by design” principle adopted by connected vehicle
systems. For OD flow measurement, a novel measurement scheme is developed to collect aggregate OD
flow data without compromising motorists’ privacy. For differentiated congestion pricing, an incentive pro-
gram is designed to encourage motorists to voluntarily reveal their private information and create a win-win
situation for both motorists and the society.
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Executive Summary

Because of concerns regarding the privacy of motorists, the current “anonymity by design” principle adopted
by connected vehicle systems does not allow vehicles to be tracked over a long distance, and thus may restrict
the development of innovative applications otherwise enabled by connected vehicle technologies. This
report examines two such applications, i.e., origin-destination (OD) flow measurement and differentiated
congestion pricing, and develops technical approaches to address privacy concerns associated with them.

The OD data provides information on flows of vehicles traveling from one specific geographical area
to another. It plays a crucial role in planning, design and management of transportation systems. The ad-
vent of connected-vehicle systems provides the potential for a fundamental shift in the way how OD data
are collected. Under the currently envisioned implementation, connected vehicles routinely communicate
with each other and the roadside equipments (RSEs) in real time via, e.g., Dedicated Short Range Com-
munications (DSRC). In principle, whenever a connected vehicle passes by an RSE, it can transmit to the
RSE its unique identification number (ID). Subsequently, the OD demand pattern of a network can be ob-
tained by comparing those IDs stored in the RSEs across the network. Unfortunately, such a straightforward
application is not supported by the “anonymity by design” principle, which must ensure anonymity and
untraceability to protect motorists privacy.

The objective of our work is to allow transportation authorities to collect aggregate OD flow data without
learning information about individual vehicles. In our scheme, vehicle IDs should be preprocessed and
protected by keys before transmission. In other words, RSEs will only be able to collect Keyed signatures
of vehicles’ IDs (referred to as KIDs). To compute the size of an OD flow between two locations based
on KIDs, we introduce a family of commutative one-way hash functions. This family of hash functions, as
its name suggests, has the unique properties of both commutativity and one-wayness. One crucial benefit
of utilizing this hash function family is that vehicles can transmit their KIDs by hashing their IDs under
totally different keys and be sure that no one is able to get their IDs, even knowing the keys (because of
one-wayness), while it still allows us to compute the OD flow size as demanded (through commutativity).
We further adopt statistical techniques and use sampling to achieve better efficiency without significantly
degrading measurement accuracy. We perform simulations to demonstrate the feasibility and scalability of
our scheme.

The second application this report investigates is differentiated congestion pricing, an innovative market-
based instrument for traffic management and congestion mitigation. Connected vehicle systems are capable
of tracking vehicles in real time and thus provide opportunities of charging vehicles with respect to the paths
they traverse, their origins or destinations. In contrast, the literature on congestion pricing primarily focuses
on anonymous link tolls. We perform computational experiments to compare differentiated pricing with
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traditional link-based anonymous tolls. The experiments show that in a first-best network condition where
all the links are tollable, differentiated pricing can substantially reduce motorists’ financial burden; in a
second-best environment where only some links are tollable, it helps to achieve a lower level of congestion.

One of the major implementation difficulties for differentiated pricing is potential violation of motorists’
location privacy. The traditional way of manually collecting toll preserves location privacy almost com-
pletely. Electronic toll collection (ETC) systems have been built to make toll collection more efficient, but
the way they currently operate may compromise motorists’ privacy rights. The systems often link motorists’
accounts and record locations and times of transactions. If toll gantries are ubiquitous, the recorded transac-
tion information may impinge on the privacy rights of motorists. However, those who are concerned about
their location privacy have the option to pay the toll by cash and avoid risk of privacy disclosure. Moreover,
for anonymous link-based tolling, it is possible to design a privacy-preserving ETC system. Unfortunately,
it is difficult, if not impossible, to design a privacy-preserving differentiated pricing system, because the
system requires the knowledge of motorists’ trip characteristics such as path.

There have been some indications that motorists, some at a price, are willing to provide private informa-
tion with the understanding that it will not be published and/or misused. Recognizing that some may benefit
from differentiated schemes while others with higher value of privacy may be better off under anonymous
tolling, we develop an incentive program for travelers to opt in to differentiated pricing. More specifically,
a hybrid of anonymous and differentiated pricing schemes will be implemented on the network. Travelers
who choose to reveal their private information will pay differentiated tolls while those who remain anony-
mous will pay uniform tolls. Since travel costs (time plus toll) in differentiated schemes are generally less
than those in the anonymous scheme, the cost savings can be viewed as incentives for drivers to participate
in differentiated pricing. Although other incentives, such as subsidies or credits, can be provided, this report
focuses on designing anonymous and differentiated tolls in the hybrid scheme and allowing for the cost
savings as incentives. The overarching goal of this hybrid scheme is to create a win-win situation for both
users and society.

viii



Chapter 1

Introduction

1.1 Background

The advent of connected vehicle systems provides the potential for a fundamental shift in the way how traf-
fic systems can be managed and operated. Connected vehicle (formerly known as IntelliDrive or Vehicle-
Infrastructure Integration) is an initiative from US Department of Transportation (USDOT) to combine cut-
ting edge technologies, including advanced wireless communications, on-board computer processing, ad-
vanced vehicle-sensors, GPS navigation and others, to produce safety, mobility and environmental benefits.
USDOT envisions a nationwide system in which connected vehicles routinely communicate with each other
and the roadside equipments (RSEs) in real time via, e.g., Dedicated Short Range Communications (DSRC).
Major connected-vehicle testbeds have been initiated in the states of California, Michigan, and Arizona [7].
USDOT intends to decide in 2013 whether connected vehicle applications show enough promise to merit a
nationwide deployment [56].

Privacy protection has been an important issue since the onset of Vehicle-Infrastructure Integration
or VII. There was considerable concern that the program would substantially compromise the privacy of
drivers, vehicle owners or passengers, since they may be tracked along their driving paths or detected vi-
olating traffic regulations and law. In 2007, the National VII Coalition established a VII privacy policies
framework that defines nine privacy principles to govern basic privacy protections in the program [29]. Cur-
rently, connected vehicle systems require “anonymity by design” for privacy protection. In this approach,
the personal identifiable information is not collected or revealed, in contrast to traditional mobile data collec-
tion practices where data are collected first and then processed to prevent the release of personal identifiable
information [9]. To ensure trusted communications between parties, connected vehicles are issued a bundle
of anonymous certificates and can use any of them, for a pre-defined period, to establish trusted anony-
mous communication. The certificate bundle will be refreshed frequently. Since no personally identifiable
information is attached to messages being transmitted, the anonymity is largely maintained. However, the
“anonymity by design” approach may hinder the development of innovative applications that would be other-
wise enabled by connected vehicle technologies, e.g., origin-destination (OD) flow collection. In principle,
whenever a connected vehicle passes by an RSE, it can transmit to the RSE its unique identification number
(ID), e.g., its vehicle identification number. Subsequently, the OD flow pattern of a network can be obtained
by comparing those IDs stored in the RSEs across the network. Unfortunately, such a straightforward appli-
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cation is not supported by the connected-vehicle architecture, which is currently being developed to assure
anonymity and untraceability [47].

1.2 Overview

The goal of this report is to investigate technical approaches to address privacy concerns associated with
innovative applications enabled by connected vehicle systems. More specifically, the reports examines two
distinctive applications, i.e., OD flow measurement and differentiated congestion pricing. The former is to
retrieve the OD information from connected vehicles and the latter charges congestion tolls with respect
to travel characteristics of connected vehicles, e.g., origins, destinations or paths that they traverse between
their origins and destinations. Both applications require tracking vehicles, thereby creating privacy concerns
and potentially violating the “anonymity by design” principle. This report thus explores two approaches to
address the privacy issues. For OD flow measurement, we develop a novel measurement scheme that utilizes
nice properties of a family of commutative one-way hash functions. The proposed scheme allows transporta-
tion authorities to collect aggregate OD flow data without learning information about individual vehicles.
Furthermore, we adopt statistical methodology and use sampling to achieve far better efficiency without
having to significantly degrade measurement accuracy. For differentiated congestion pricing, we propose
an incentive program that allows motorists to opt in. The program is designed to encourage motorists to
voluntarily reveal their private information and create a win-win situation for both motorists and the society.

The remainder of the report is organized as follows. Chapter 2 discusses the application of OD flow
measurement while Chapter 3 proposes differentiated congestion pricing and addresses privacy concerns
associated with it. Lastly, Chapter 4 concludes the report.
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Chapter 2

Secure Origin-Destination Flow
Measurement in Connected Vehicle Systems

2.1 Introduction

Traffic volume measurement is one of the most basic functions of road planning and management. Today the
most widely used traffic volume statistic is the annual average daily traffic (AADT) [55], which describes
the number of vehicles that traverse a specific point in the road system annually. Although AADT is very
useful, it is only “point” information. It cannot tell us the traffic volume from one location to another in a
city, and it cannot tell us the traffic volume on an arbitrary road segment. To gain better understanding of
the road usage, we need “point-to-point” statistics that measure traffic volumes between distinct locations.
Prior research has made steady advance in estimation of “point” statistics like AADT (e.g. Bozic et al.
[12], Mohamad et al. [45], Lam and Xu [34], McCord et al. [43], Zhao and Park [67], Eom et al. [18], Neto
et al. [46]). However, little work has been done on “point-to-point” traffic volume measurement.

In this chapter, we investigate the problem of secure point-to-point traffic volume measurement. We
formalize point-to-point traffic as an origin-destination (OD) flow, whose size is the number of vehicles
traveling from one geographical location (origin) to another (destination). Like AADT, OD flow data is an
essential input to a variety of studies including estimation of transportation link flow distribution as part of
investment planning, calculation of road exposure rates as part of safety analysis, and characterization of
turning movements at intersections for signal timing determination, etc. However, very few techniques have
been developed to collect OD data, not to mention doing so securely. Two commonly applied methods,
household interviews and road surveys, are both time consuming and labor intensive. In general, issues
about securely obtaining OD flow data have not been adequately addressed, and remain a major obstacle to
a wide range of transportation studies.

Vehicular cyber-physical systems (VCPS) utilize the latest technologies in wireless communications, on-
board computer processing, vehicle sensors, GPS navigation, etc., to improve safety, efficiency, resiliency,
and environmental compatibility of transportation systems [19, 39]. There are several worldwide VCPS
initiatives including connected vehicle systems, formerly known as IntelliDrive [4] or Vehicle Infrastructure
Integration, from the US Department of Transportation (USDOT) [3], which envisions a nationwide system
where connected vehicles routinely communicate with each other and roadside equipments (RSE) in real
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time via Dedicated Short Range Communications (DSRC) or other wireless communications technologies.
The advent of VCPS provides the potential for a fundamental shift in the way how OD data are collected.
In principle, since vehicles are equipped with computing and communication capabilities, when a vehicle
passes by an RSE, it can transmit its unique ID (e.g., its vehicle identification number or VIN) to the RSE.
Subsequently, the OD flow between two RSEs can be easily recognized by comparing the two sets of IDs
stored in them — there must be a vehicle traveling between them if both RSEs record a common ID.
However, this straightforward approach leads to serious privacy breaching as it also tracks the entire moving
history of each vehicle, which is against the “anonymity by design” principle for privacy protection required
by connected vehicle systems. Hence, the challenge is to allow the collection of statistical OD flow data, yet
protect information about each individual vehicle.

The objective of our work is to allow transportation authorities to collect aggregate OD flow data from
VCPS without learning information about individual vehicles. First of all, globally unique IDs like VINs
are identity information of vehicles. The leakage of such IDs will enable others to track the vehicles. Other
permanent or temporary numbers that are transmitted repeatedly by a vehicle can also be exploited for the
tracking purpose. Therefore, IDs (or other fixed numbers) should be preprocessed and protected by keys
before transmission. In other words, RSEs will only be able to collect Keyed signatures of vehicles’ IDs
(referred to as KIDs). To compute the size of an OD flow between two locations based on KIDs, we introduce
a family of commutative one-way hash functions. This family of hash functions, as its name suggests, has
the unique properties of both commutativity and one-wayness. One crucial benefit of utilizing this hash
function family is that vehicles can transmit their KIDs by hashing their IDs under totally different keys and
be sure that no one is able to get their IDs, even knowing the keys (because of one-wayness), while it still
allows us to compute the OD flow size as demanded (through commutativity).

Utilizing the family of commutative one-way hash functions, one straightforward solution for secure OD
flow measurement is to have the RSEs be responsible for key generation, and they will broadcast their keys
to the passing vehicles. When a vehicle passes by an RSE, it always reports a KID to the RSE, which is the
hash result of its ID and the RSE’s key, unless the key is equal to any previously received key. This scheme
preserves vehicle privacy. It is also efficient in terms of computation overhead and space requirement.
However, as we will demonstrate later, it is vulnerable to an identical-key attack. To address this problem,
we propose an enhanced scheme for secure OD flow measurement. Instead of using the keys generated
by the RSEs, the vehicles choose their own keys to protect their IDs. The second mechanism prevents the
identical-key attack at the cost of increased computation overhead. To make this scheme practical, we adopt
statistical method with sampling to construct a maximum likelihood estimation formula for the OD flow
size. We summarize our contributions below:

1. We introduce the new problem of secure OD flow measurement, which measure point-to-point traffic
in a privacy-preserving way. It has significantly practical impact in the context of a future connected
vehicles system. We observe that VCPS have the potential for a fundamental shift in the way how OD
flow data can be securely collected.

2. We adopt a family of commutative one-way hash functions and propose a secure scheme for OD flow
measurement in VCPS. Not only will the new scheme correctly measure the OD flow sizes between
all pairs of RSEs, but also it protects the identities of vehicles throughout the measurement process.

3. We further adopt statistical methods to improve the measurement efficiency at the cost of graceful
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degradation in measurement accuracy. The tradeoff between computation efficiency and measurement
accuracy can be controlled. The simulation results demonstrate the feasibility and scalability of our
scheme.

2.2 Preliminaries

2.2.1 System Model

We consider a VCPS model involving three different entities: vehicles, RSEs, and a central server. Each
vehicle has an unique ID, for example, VIN or other number chosen permanently or temporarily. The set
of RSEs is denoted as S = {s1, s2, ..., sN}, where N is the total number of RSEs of interest in the system.
Both vehicles and RSEs are equipped with computing and communication capabilities, such as on-board
computer chips and communication modules. Vehicles communicate with RSEs in real time via DSRC [3].
RSEs are connected to a central server through wired or wireless means. They collect information from
vehicles and transfer the information to the server at the end of each measurement period (such as a day) to
the server for further processing.

2.2.2 Problem Statement

We define an OD flow as the set of vehicles traveling from one RSE-equipped location (origin) to another
RSE-equipped location (destination) during a measurement period. The size of an OD flow is the number of
vehicles in the set. The problem is to design a secure OD flow measurement scheme that measures the sizes
of OD flows between all pairs of origin/destination locations in a road system where RSEs are installed. By
“secure”, we mean no identity information of vehicles will be revealed during the whole measurement pro-
cess. The proposed scheme should preserve the privacy of individual vehicles while allowing for aggregate
OD flow measurement.

One easy way to measure OD flows is for each vehicle to transmit its ID whenever it passes by an
RSE, which broadcasts queries in pre-set intervals (e.g., once a second), ensuring that each passing vehicle
receives at least one query and in the meantime giving enough time for the vehicle to reply. But as we have
explained in the introduction, this approach allows the authority to keep track of every individual vehicle.
We want to design a solution in which a vehicle never transmits its ID or any fixed number that may be used
for tracking purpose. Ideally, the information transmitted by a vehicle to any RSE is different each time and
looks totally random, as a car that keeps transmitting the same number is more vulnerable of being tracked.

We assume that a special MAC protocol is used to support privacy preservation such that the MAC
address of a vehicle is not fixed. For instance, when responding to an RSE, the vehicle may pick an MAC
address randomly from a large space for one-time use. Since the number of vehicles in the vicinity of the
RSE is limited, the probability for two vehicles to choose the same MAC address can be made negligibly
small when the address space is sufficiently large.

2.2.3 Threat Model

We use a semi-trust model for the RSEs. We assume that the RSEs are all from the trustworthy authorities.
This assumption can be enforced through authentication based on PKI. Each vehicle is pre-installed with
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the public keys of the trusted third parties. Each RSE must have a public-key certificate from one of those
third parties. It broadcasts the certificate in each query that it sends out. When receiving a query, the vehicle
verifies the certificate, and then uses the RSE’s public key to authenticate the RSE. We also assume that the
authorities may exploit the information collected by RSEs to track individual vehicles when they need to
do so. For instance, as we discuss previously, if a vehicle transmits any fixed number upon each query, that
number can be exploited for tracking purpose.

It is important to note that there are many other ways to track a vehicle, for example, tailgating the
vehicle, or setting cameras near RSEs to take photos and then using image processing to recognize vehicles.
These methods are beyond the scope of this chapter. We focus on preventing automatic real-time tracking
caused by the leakage of vehicle identity via RSEs.

2.2.4 Design Goals

To enable secure OD flow measurement under the aforementioned model, our scheme should achieve the
following design goals.

1. Correctness: the proposed scheme should be able to correctly measure the OD flow size for arbitrary
pair of RSEs, or with a measurement error that is probabilistically bounded.

2. Privacy guarantee: the proposed scheme should be able to protect the identity information of vehicles
from unauthorized leakage and inference.

3. Efficiency: the proposed scheme should have means to control its overhead for scaling to a large road
system.

2.3 Related Work

2.3.1 Traffic Volume Measurement

Much of existing work on traffic volume measurement is to design efficient protocols for estimation of
the “point” traffic volume statistic, i.e., AADT (e.g. Bozic et al. [12], Mohamad et al. [45], Lam and Xu
[34], McCord et al. [43], Zhao and Park [67], Eom et al. [18], Neto et al. [46]). To obtain the AADT values,
automatic traffic recorders (ATR) are installed at road sections, whose major use is to count the number of
vehicles passing by, and a prediction model, such as multiple linear regression (MLR) or artificial neural
network (ANN), is then chosen to estimate AADT based on recorded data. The key issues are to choose
the most appropriate prediction model under different circumstances, and to determine significant variables
to be predictors. Challenges arise when there are limited ATRs and many independent variables to monitor
for the prediction model. To address these issues and challenges, many approaches have been proposed
over the passed few decades. For example, Mohamad et al. [45] propose to estimate AADT for county
roads, where the scarce of APRs is the major concern, in an MLR model by using aggregated data at
the county level. Lam and Xu [34] use both ANN and MLR to estimate AADT based on short-period
counts of traffic in Hong Kong, and claim that ANN is more accurate than MLR. Another prediction model,
geographically weighted regression (GWR), is presented in Zhao and Park [67]. Compared with MLR and
ANN, GWR is more accurate and useful for studying the effects of the regressors at different locations.
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Eom et al. [18] designed a spatial regression model (SRM), especially for nonfreeway facilities, which
takes advantages of spatial dependency (i.e. the traffic volume at one monitoring station is correlated with
the volumes at neighboring stations). Support vector machine for regression (SVR), a modified version of
a pattern recognition technique, is introduced to forecast AADT in Neto et al. [46], which computes the
SVR prediction parameters based on the distribution of the training data and achieves better performance
than MLR. Besides these ground-based methodologies, McCord et al. also consider using high-resolution
satellite imagery to identify vehicles for counting purpose [43]. As they observe through empirical results,
combining satellite-based data with traditional ground-based data could reduce both AADT estimation errors
and ground-based sampling efforts.

The aforementioned solutions, although elegant, are not appropriate for “point-to-point” traffic volume
measurement (OD flow measurement). More complicated recoding techniques and computations are re-
quired to measure the traffic volume between a pair of locations than that of a single one. The problem also
becomes more challenging when the security factor is involved as more and more people concern about their
traveling privacy.

2.3.2 Privacy Preserving Data Mining

Another branch of research that relates to (but is also significantly different from) ours is privacy preserving
data mining (PPDM), where researchers study various techniques to find simple rules or models that sum-
marize the data (patterns) by examining data in large databases, while protecting the sensitive information
about individuals whose information are the subject of the patterns [2, 24]. Several approaches have been
proposed for different PPDM tasks over the past few decades, and the suggested solutions can be briefly
summarized into two categories. One approach is to “randomly” perturb the data by adding “noise” be-
fore the data mining process, and mitigate the impact of the noise afterwards by reconstruction techniques.
For example, Agrawal and Srikant are among the first who incorporate privacy concerns into data min-
ing techniques, when they show the technical feasibility of PPDM by perturbing the original data using a
randomizing function and reconstructing the distribution rather than individual records [6]. The work of
Evfimievski et al. [20] and Evfimievski et al. [21] follow the same approach. However, some question about
the usage of the randomization techniques for PPDM by showing that original data could be retrieved from
the randomized dataset [31]. The alternative approach is to use cryptographic techniques to preserve privacy.
For instance, Clifton et al. [13], propose a set of tools for privacy preserving mining of distributed data using
encryption schemes. Others have also addressed association rule mining (e.g., Zhang et al. [66], Vaidya and
Clifton [57]) and classification (e.g. Yu et al. [64]) following the same approach.

Although they are motivated by the same need to both protect privileged information and enable its use
for research, industry or other purposes, directly applying PPDM techniques to secure OD flow measurement
can still be problematic. The major reason is that PPDM does not address the security concerns of data
collection, i.e., all these schemes in the context of PPDM require that all data collectors have collected
“untouched” data in the first place. However, in our context of secure OD flow measurement, the fact that
no one (including data collectors) should know the real vehicle ID (“untouched” data) except the vehicle
itself, imposes a huge demand for customized design of a novel secure measurement scheme which targets
at individual vehicle level starting from the very first step of data collection. Another reason is the different
view of data during the data examining process. In PPDM tasks, since “untouched” data are distributed
among a limited number of data collectors, efficient protocols can be designed under a unified database view.
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However, given the nature of secure traffic volume measurement, data processing needs to be performed
under an indistinguishable individual view (to protect vehicle identity throughout the process), which incurs
inevitable higher computation overheads, motivating us to seek statistical methods to improve the overall
efficiency without much degradation of measurement accuracy.

2.4 Solution Using Commutative One-way Hash Function

In this section, we propose a solution for secure OD flow measurement based on a family of commutative
one-way hash functions (COHF). A common COHF is deployed to all RSEs and vehicles. RSEs are re-
sponsible for generating and distributing hash keys, and vehicles apply the hash function to produce Keyed
signatures of their IDs (referred to as KIDs) using the keys obtained from RSEs that they pass by. The KIDs,
instead of real IDs, are then reported to RSEs for OD flow measurement. Before describing the full solution,
we first introduce the family of commutative one-way hash functions.

2.4.1 Commutative One-Way Hash Functions

Consider a hash function h : A × B → C, where the two arguments are a hash input and a hash key,
respectively. A commutative one-way hash function, as its name suggests, satisfies both one-wayness and
commutativity. The definitions of the properties below are collated from [44] and [10].

Definition 1 A family of one-way hash functions (OHF) is a set of functions h` : X` × Y` → Z` which
satisfy the following three properties:

• Ease of computation: there exists a polynomial P such that for each integer `, h`(x, y) is computable
in time P (`, |x|, |y|) for all x ∈ X` and all y ∈ Y`.

• Preimage resistance: there is no polynomial P such that there exists a probabilistic polynomial time
algorithm which can, given `, a value y ∈ Y`, and a value z ∈ Z`, find x ∈ X` such that h`(x, y) = z
with probability greater than 1/P (`) for all sufficiently large `, when y is chosen uniformly from Y`
and z is chosen uniformly from Z`.

• 2nd-preimage resistance: there is no polynomial P such that there exists a probabilistic polynomial
time algorithm which can, given `, a pair (x, y) ∈ X`× Y`, and a value y′ ∈ Y`, find a value x′ ∈ X`

such that h`(x, y) = h`(x
′, y′) with probability greater than 1/P (`) for all sufficiently large `, when

(x, y) is chosen uniformly among all elements of X` × Y` and y′ is chosen uniformly from Y`.

h` is said to have the one-wayness property if it satisfies the three properties above.

In Definition 1, the first property tells that for a known function h`, given an input x and a key y, it is
relatively easy to compute h`(x, y) (in polynomial time). The second property tells that it is computationally
infeasible to find any input which hashes under a given key to the arbitrarily pre-specified output. And the
third property tells that it is computationally infeasible to find a second input that can be hashed under a
given key to the same output as the arbitrarily pre-specified input and key.
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Definition 2 A commutative hash function (CHF) is a hash function h` : X` × Y` → X` which satisfies the
following property:

• Commutativity: for all x ∈ X` and for all y1, y2 ∈ Y`, h`(h`(x, y1), y2) = h`(h`(x, y2), y1) holds.

One can see that the commutativity lies in the keys. In other words, given an input and two keys,
commutativity tells that changing the order in which the two keys are applied to the input won’t change the
hash result. Further observations gives that, if the range of the one-way hash function is equal to the domain
of its first argument, then we can exploit a new family of commutative one-way hash functions which shall
satisfy both one-wayness and commutativity.

Definition 3 A family of commutative one-way hash functions (COHF) is a family of hash functions which
have both one-wayness property and commutativity property.

We will see shortly one crucial benefit of utilizing this hash function family: Vehicles can transmit their
KIDs by hashing their IDs under totally different keys, and be sure that no one will be able to get their IDs,
even knowing the keys that the vehicles have used (because of one-wayness). Yet the KIDs allow OD flow
measurement as demanded (through commutativity).

2.4.2 The Proposed Scheme

Using the COHFs, we propose the following scheme for secure OD flow measurement. Each measurement
period consists of three phases: initialization, online reporting, and offline measurement. The initialization
phase establishes the keys for RSEs. Information for OD flow measurement are securely collected during
the online reporting phase. Finally, the offline measurement phase computes the sizes of OD flows between
all pairs of RSEs.

Construction of Commutative One-Way Hash Functions

Before describing the three measurement phases, we construct the COHFs. According to Definition 3, a
COHF is a hash function that satisfies both one-wayness and commutativity. There can be different con-
structions of COHFs given different types of hash functions, and the one that we adopt is based on the
exponentiation modulo n function, hn(x, y) = xy mod n. We claim that hn is a COHF with some restric-
tions on n.

Definition 4 A prime p is defined to be safe if p = 2p′ + 1 where p′ is an odd prime.

Definition 5 n is defined to be a rigid integer if n = pq where p and q are distinct large safe primes.

Theorem 1 The function hn(x, y) = xy mod n is a commutative one-way hash function if n is a rigid
integer.
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Note that the selection of n and hn in Theorem 1 follows the RSA algorithm [50]. Through two lemmas,
we prove Theorem 1 by showing that hn satisfies both one-wayness and commutativity, which qualifies it
as a COHF.

Lemma 1 The function hn(x, y) = xy mod n satisfies commutativity for any given n.

Proof: For any given n, and for any integer x, y1 and y2, hn(hn(x, y1), y2) is the result of multiplying x
by itself modulo n for y1 + y2 times, while hn(hn(x, y2), y1) is the result of multiplying x by itself modulo
n for y2 + y1 times. Therefore, hn(hn(x, y1), y2) = hn(hn(x, y2), y1) holds for all integers x and for all
integers y1 and y2, which establishes that hn(x, y) satisfies commutativity according to Definition 2. 2

Lemma 2 The function hn(x, y) = xy mod n satisfies one-wayness if n is a rigid integer.

Proof: We prove the one-wayness of hn by showing that hn satisfies all three properties in Definition 1.
First, hn satisfies ease-of-computation. There are efficient methods to perform exponentiation of a base to
an exponent. One is to start with an output of 1 and a value set to the base, read the exponent in binary
bit by bit from low-order bit to high-order bit, square the value each time from the second bit on, and if
the bit is 1, also multiply the output by the value. Modular reduction is performed after each operation to
keep the intermediate results bounded by n. Applying this method, according to Kaufman et al. [32], the
number of multiplications rises linearly with the length of the exponent in bits rather than with the value of
the exponent itself.

Second, the preimage resistance of hn follows the cryptographic security of the RSA cryptosystem,
which is equivalent to the difficulty of taking roots modulo n. Root finding modulo n is shown in [53] to be
very difficult (cannot be done in polynomial time) when n is a large composite number. Also, the commonly
accepted RSA assumption [50] tells that, for these “appropriately” chosen n, computing x from hn(x, y), y,
and n cannot be done in polynomial time for all but an exponentially small number of cases.

Third, the 2nd-preimage resistance of hn is given by the characteristics of rigid integers. It is demon-
strated in [10] that if n is a rigid integer, then finding collisions with specific constraints (2nd-preimage)
cannot done in polynomial time unless a set of roots can be obtained such that the product R of their in-
dices is a multiple of the desired root index y′. However, the number of known roots which would have
to be provided in order to have a non-negligible probability of their product being a multiple of a random
number selected later (y′) would be prohibitively large. In other words, to find collisions in the form of
hn(x, y) = hn(x′, y′) for given x, y, and y′ is extremely unlikely. This completes the proof. 2

Initialization

A common commutative one-way hash function hn must be pre-distributed to all vehicles and RSEs. The
hash function is determined by a large rigid integer n. Algorithm 1 provides a practical method to construct
a rigid integer. The basic idea is that for n = pq to be a rigid integer, each of p, q, (p−1)

2 and (q−1)
2 must

be primes congruent to 5 modulo 6. Therefore, the process is to first select a “random” integer p′ that
is congruent to 5 modulo 6 until one is found such that p′ and 2p′ + 1 are both prime, and then choose
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Algorithm 1 Algorithm for Constructing Rigid Integers
1: INPUT: an upper bound U and a lower bound L.
2: OUTPUT: a rigid integer n such that L ≤ n ≤ U , or return -1 if such n does not exist.
3: findN← FALSE, n← −1, i← −1
4: repeat
5: findP← FALSE
6: repeat
7: i← i+ 1, p′ ← 6i+ 5, p← 2p′ + 1
8: if p′ and p are both prime then
9: findP← TRUE

10: end if
11: until findP = TRUE
12: j ← i
13: repeat
14: j ← j + 1, q′ ← 6j + 5, q ← 2q′ + 1
15: if q′ and q are both prime then
16: n← pq
17: if L ≤ n ≤ U then
18: findN← TRUE
19: end if
20: end if
21: until n > U ‖ findN = TRUE
22: until n > U ‖ findN = TRUE
23: if findN = FALSE then
24: n← −1
25: end if
26: return n
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a suitable q′ similarly. After we find two distinct safe integers p′ and q′, n can be easily constructed by
n = pq = (2p′ + 1)(2q′ + 1).

All RSEs and the vehicles are pre-configured with a suitable n, and the clocks of RSEs are loosely syn-
chronized as they are all connected to a central server through wired or wireless means. In the initialization
phase of each measurement period, every RSE generates a random number as its hash key for the current
period. With the assistance of the server, all hash keys are unique: Let ki be the hash key generated by RSE
si. We require that, for any two RSEs si and sj , their keys ki and kj be different, i.e., ki 6= kj . If the server
finds that two hash keys reported from RSEs are the same, it will inform one of them to regenerate a key.
The key uniqueness requirement serves an important purpose, which will be explained later.

Online Reporting

The online reporting phase securely collects information for OD flow measurement. The RSEs broadcast
queries in pre-set intervals (e.g., once a second), ensuring that each passing vehicle receives at least one
query and in the meantime giving enough time for the vehicle to reply. Collisions can be resolved through
well-established CSMA or TDMA protocols, which are not the focus of this chapter. Every query that an
RSE sends out includes the RSE’s ID, public-key certificate, as well as its current hash key. When a vehicle,
whose ID is vj , receives a query from an RSE si, it first verifies the certificate, and then uses the RSE’s
public key to authenticate the RSE. After verifying that si is from the trustworthy authority, the vehicle
generates a KID based on its ID vj and the RSE’s key ki by computing a hash c = hn(vj , ki) = vkij mod n.
After that, it reports this KID c to the RSE, which then stores c in its local storage.

Offline Measurement

At the end of each measurement period, the OD flow sizes between pairs of RSEs will be computed based
on the KIDs collected by RSEs during the online reporting phase. More specifically, every RSE will send its
key as well as the collected KID set to a central server, and the central server will be in charge of the offline
OD flow size computation.

Thanks to the commutativity property of hn, given two sets of KIDs, {hn(·, kx)} and {hn(·, ky)}, col-
lected by two RSEs sx and sy respectively, and the two corresponding keys, kx and ky, it is easy for the
central server to determine the OD flow size between sx and sy. In principle, changing the order in which
two keys are applied to the same vehicle ID using commutative one-way hash functions won’t change the
final hash result. Therefore, to find vehicles that pass both sx and sy, the central server will further hash
each RSE’s KID set by the other RSE’s key, and then compare the common values of the two double-hashed
sets. The process is as follows.

I. The central server performs an element-wise hash over the KID set Hx = {hn(·, kx)} collected by sx
using sy’s key, ky, to obtain a double-hashed set Hx,y = {hn(hn(·, kx), ky)}.

II. The central server performs an element-wise hash over the KID set Hy = {hn(·, ky)} collected by sy
using sx’s key, kx, to obtain a double-hashed set Hy,x = {hn(hn(·, ky), kx)}.

III. The central server finds the common elements in Hy,x and Hx,y. According to Theorem 2 below, the
OD flow size between sx and sy is equal to the number of common elements in the two double-hashed
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sets Hy,x and Hx,y. If we take the timestamps of the KIDs into consideration, we can easily determine
the size of an directional OD flow for vehicles that appear at sx first and then appear at sy at a later
time.

Theorem 2 Given a commutative one-way hash function hn(v, k) = vkmodn, for arbitrary vehicle IDs v1
and v2, and arbitrary keys k1 and k2, hn(hn(v1, k1), k2) = hn(hn(v2, k2), k1) holds if and only if v1 = v2
holds.

Proof: (“⇐”) Suppose v1 = v2.

hn(hn(v1, k1), k2) = hn(hn(v2, k1), k2). (2.1)

Since hn is a commutative one-way hash function, it is by definition commutative. Therefore, for any
two keys k1 and k2, we have

hn(hn(v2, k1), k2) = hn(hn(v2, k2), k1). (2.2)

From equation 2.1 and 2.2, we have

hn(hn(v1, k1), k2) = hn(hn(v2, k2), k1). (2.3)

(“⇒”) Suppose hn(hn(v1, k1), k2) = hn(hn(v2, k2), k1). Again, hn is commutative. By definition, for
any two keys k1 and k2, we have

hn(hn(v2, k2), k1) = hn(hn(v2, k1), k2). (2.4)

From equation 2.4 and the assumption, we obtain

hn(hn(v1, k1), k2) = hn(hn(v2, k1), k2). (2.5)

Since the number of vehicles in the vicinity of two RSEs is limited, and the hash space is sufficiently
large, the probability for two distinct vehicle IDs to be hashed under the same key to the same value is
negligibly small. Therefore, from Equation 2.5, we can conclude v1 = v2, with exceedingly high probability.
This completes the proof. 2

2.4.3 Scheme Analysis

The proposed scheme preserves vehicle privacy throughout the measurement process. The initialization
phase is clearly privacy-preserving because no information of any vehicle is transmitted. During the online
reporting phase, vehicles only transmit their KIDs to RSEs. Since a COHF hn is applied, no one will be
able to obtain real vehicle IDs from their KIDs because of hn’s one-wayness property. In addition, vehicles
are protected from being tracked because no fixed information of any vehicle is allowed to be transmitted
according to the key uniqueness requirement. As for the offline measurement phase, due to the one-wayness
property of hn, the central server cannot obtain any vehicle ID from its KID, either.
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The proposed scheme is also efficient in terms of computation time and space requirement. To measure
OD flow sizes, each vehicle only needs to compute one hash for each passing RSE, and each RSE only needs
to store one KID value for each passing vehicle. Therefore, the overall time complexity for each vehicle is
linear to the number of distinct RSEs that it passes by, which is bounded by O(N), where N is the total
RSEs in the whole system. The overall space requirement for each RSE is linear to the number of distinct
vehicles that pass by, which is bounded by O(M), where M is the total number of vehicles in the system.
In addition, for the central server to compute an OD flow size between two RSEs, it takes an additional hash
for each KID value from the two KID sets. So the number of hash operations is bounded by O(M). To
find the common double-hashed values, the central server needs to sort the two double-hashed sets, which
takes O(M logM). Therefore, the overall time complexity for the central server to measure an OD flow is
O(M logM).

2.4.4 Identical-key Attack

The above analysis assumes the transportation authority (who owns RSEs and the central server) is trust-
worthy. But this assumption also allows the transportation authority an easy way of tracking vehicles. It
may simply set all or a portion of RSEs with the same key. When a vehicle passes these RSEs, its KID stays
the same and therefore may be exploited for tracking purpose. Even if the authority uses different keys for
different RSEs, it may use the same key for an RSE over multiple measurement periods. Any vehicle that
passes the RSE will repeatedly transmit the same KID over this time. Even within the same measurement
period (when the hash key is definitely unchanged), a vehicle may pass a RSE for two or more times, and
it will transmit the same KID, which is still undesirable from the privacy-preserving point of view. Ideally,
the vehicle should transmit a different value each time, and the value should appear totally random and
unpredictable.

To avoid transmitting the same number (KID) in the above scenarios, a vehicle may keep record of the
RSE keys that it has seen before, and will not respond to an RSE with its KID if the key from that RSE is
already in the vehicle’s record.

This solution however causes an underestimation problem. Suppose during a measurement period (e.g.,
a day), a vehicle vj passes by an RSE si for two or more times. This is not uncommon in reality. For
example, people driving to work are likely to follow the same route back home. On its way to work, vehicle
vj reports its KID to RSE si. But when it comes back to home on the same route, vj receives the same hash
key from the same RSE, if it does not respond with the same KID, it will be counted only in the OD flow
from home to workplace, but will not be counted in the flow from workplace to home. In other words, while
the vehicle contributes twice to traffic volume between home and workplace, it is actually counted only once
(if the vehicle does not respond to the same key). This will result in an underestimation of the OD flow size.

To fully address the above concerns, we need to make a fundamental shift in who is responsible for
key generation. We shall move that responsibility from RSEs to the vehicles in order to ensure that the key
uniqueness requirement is met.
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2.5 Enhanced Scheme for Secure OD Flow Measurement

Instead of using the keys generated by RSEs, our second scheme lets vehicles choose their own keys to
protect their IDs. Still, RSEs will collect KIDs from vehicles, and a central server will then compute pairwise
OD flow sizes based on the collected KID sets. The enhanced scheme has two phases: online reporting and
offline measurement.

Similar to the previous scheme, vehicles and RSEs are pre-configured with a common commutative one-
way hash function hn, which is determined by a suitable n computed from Algorithm 1. Unlike the previous
scheme, each RSE not only stores the KIDs of the passing vehicles, but also saves the corresponding keys
that are used by the vehicles to compute the KIDs. Essentially, each RSE will store a set of 〈key, KID〉
pairs obtained from the passing vehicles in the online reporting phase, which is then used in the offline
measurement phase to determine OD flow sizes.

2.5.1 The Enhanced Scheme

Online Reporting

During the online reporting phase, 〈key, KID〉 pairs are securely collected by RSEs from passing vehicles
in preparation for offline OD flow measurement. More specifically, when a vehicle vi passes by an RSE sj ,
the vehicle will first verify that the RSE comes from trusted authorities based on the public-key certificate
received from the RSE’s periodic broadcast. Then the vehicle will randomly choose a hash key k, and
compute a hash c = hn(vi, k) = vki mod n, which serves as a KID of vi. After that, the vehicle reports the
KID c and the key k to sj , which stores this 〈key, KID〉 pair in its local storage.

Offline Measurement

At the end of each measurement period, all RSEs will send their collected data to the central server, which
computes the sizes of the OD flows between all pairs of RSEs. Given two sets of 〈key, KID〉 pairs collected
by two RSEs sx and sy, the central server can compute the size of the corresponding OD flow based on the
hash function hn’s commutativity. The process is to go through these two sets, and for each pair collected
by sx, check if it shares a common double-hashed value with any pair collected by sy. If such a pair exists,
a vehicle is found to pass both RSEs.

Definition 6 Two 〈key, KID〉 pairs, 〈kx, cx〉 and 〈ky, cy〉, are said to share a common double-hashed value
if hn(cy, kx) = hn(cx, ky) holds. Note that cx and cy are hash values themselves.

Algorithm 2 summarizes the offline measurement process. We give the basic idea of the algorithm
as follows: Suppose 〈kx, cx〉 from sx and 〈ky, cy〉 from sy share a common double-hashed value, i.e.,
hn(cy, kx) = hn(cx, ky). By definition, cx = hn(vx, kx), and cy = hn(vy, ky), where vx(vy) is the ID of the
vehicle passing by RSE sx(sy). Thus, hn(cy, kx) = hn(hn(vy, ky), kx) = hn(hn(vx, kx), ky) = hn(cx, ky),
which means vx = vy according to Theorem 2. Hence, we know that a common vehicle has passed both sx
and sy.
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Algorithm 2 Algorithm for Offline Measurement
1: INPUT: a commutative one-way hash function hn; two sets of 〈key, KID〉 pairs collected by two RSEs
sx and sy, Dx = {〈kix, cix〉}nx

i=1, Dy = {〈kiy, ciy〉}
ny

i=1.
2: OUTPUT: the OD flow size between RSE sx and sy, i.e., the number nxy of pairs in Dx and Dy that

share common double-hashed values.
3: nxy ← 0
4: for i from 1 to nx do
5: kx ← kix, cx ← cix
6: for j from 1 to ny do
7: ky ← kjy, cy ← cjy
8: pxy ← hn(cx, ky)
9: pyx ← hn(cy, kx)

10: if pxy = pyx then
11: nxy ← nxy + 1
12: end if
13: end for
14: end for
15: return nxy

Scheme Analysis

The enhanced scheme eliminates the underestimation problem that is encountered by the previous scheme.
Under the new scheme, even though a vehicle vi may pass an RSE sj for several times, each time it uses a
different key to protect its ID. No matter how many times a vehicle passes by an RSE, each time a different
〈key, KID〉 pair will be recorded and be counted towards the final measurement result. Therefore, the
measured OD flow sizes should always be equal to the real OD flow sizes.

The enhanced scheme improves the measurement accuracy at the cost of increased computation over-
head. In order to compute the OD flow size between two RSEs, sx and sy, the central server needs to perform
a re-hash for each pair collected by sx under every key from sy, and do the same thing for sy. Suppose the
two RSEs have collected nx and ny pairs of 〈key, KID〉, respectively. The time complexity for the central
server to compute the OD flow size between the two RSEs will be O(nx · ny).

2.5.2 Down Sampling

To address the efficiency problem, we propose to use down sampling to estimate the OD flow size during
the offline measurement phase. Given two sets of 〈key, KID〉 pairs collected by two RSEs sx and sy,
Dx = {〈kix, cix〉}nx

i=1, Dy = {〈kiy, ciy〉}
ny

i=1, the OD flow size between sx and sy is equal to the number
nxy of pairs in Dx and Dy that share common double-hashed values. The time required for the central
server to calculate the OD flow size is O(nx · ny). To reduce computation overhead, we randomly select np
elements from Dx and nq elements from Dy, denoting them as D′x and D′y respectively, and calculate the
number n′xy of pairs in D′x and D′y that share common double-hashed values. It takes O(np · nq) time to
compute the OD flow size from such a sample. Based on n′xy and the sampling probability, we can construct
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the maximum likelihood estimate of nxy as

Nxy = n′xy ×
nx
np
× ny
nq
, (2.6)

which is derives as follows: If we define two pairs from Dx and Dy as a common element in these two
sets if they share a common double-hashed value, then we have the following equivalent problem of set
intersection size estimation: Let X and Y be two sets having cardinalities |X| = a, |Y | = b, |X ∩ Y | = c.
We randomly choose two subsets of elements, Xk and Yk, with cardinalities ak and bk, from X and Y ,
respectively. We calculate the number of common elements in the two sets Xk and Yk, denoted by c′. The
problem is to construct the maximum likelihood estimate of c based on c′, a, b, ak, and bk.

For a randomly selected element x ∈ X , the probability for x ∈ Y equals the probability for x ∈ X∩Y ,
namely, P (x ∈ Y ) = c

a . Similarly, for a randomly selected element y ∈ Y , the probability for y ∈ X
equals the probability for y ∈ X ∩ Y , namely, P (y ∈ X) = c

b . Partition X and Y into two subsets
each at random, X = Xk ∪ Xu, Y = Yk ∪ Yu, |Xk| = ak ≤ a, |Yk| = bk ≤ b, where Xk and Yk
represent the “known” elements that we choose from X and Y , while Xu and Yu represent the remaining
“unknown” elements. Then |Xk∩Y | is binomially distributed according toB(n, p) = B(ak,

c
a). Therefore,

for each x ∈ Xk, P (x ∈ Y ) = c
a . Since each element is chosen uniformly random from the original set,

P (x ∈ Yk|x ∈ Y ) = bk
b . Combining the probabilities of the two dependent events, for each x ∈ Xk,

P (x ∈ Yk) = P (x ∈ Y ) · P (x ∈ Yk|x ∈ Y ) =
c

a
× bk

b
.

The size of the subset intersection ck = |Xk∩Yk| is again binomially distributed according toB(n, p) =
B(ak,

c
a ×

bk
b ), with expectation value

E(ck) = |Xk| × P (x ∈ Yk|x ∈ Xk)

= ak ×
c

a
× bk

b

= c× ak
a
× bk

b
.

Now consider the above process in reverse. The sampling gives an estimate of ck, which is c′, we want
to find the value of c = |X ∩ Y | that is most likely to have given rise to c′, which in this case means finding
c such that E(ck) = c′. This is the maximum likelihood estimate of c, cmle. From the equation just derived,
cmle = c′ × a

ak
× b

bk
.

Given the equivalence of our problem and the set intersection estimation problem above, it is clear that
Nxy = n′xy× nx

np
× ny

nq
is the maximum likelihood estimate of nxy. By adopting the down sampling method,

the overall computation overhead for the central server to compute the OD flow size between sx and sy is
reduced from O(nx · ny) to O(np · nq).

2.6 Simulation Results

In this section, we evaluate the performance of our two schemes through simulation experiments. The
programs are written in Matlab, and the commutative one-way hash function is realized through Java’s
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BigInteger class [1]. The experimental platform is a PC featured with an Intel Core 2 E8400 CPU and 4GB
RAM, running Windows XP. However, we expect the central server in practice to be much more powerful
than our PC. Moreover, the offline measurement task may be divided and distributed to several servers,
which saves time by performing smaller pieces of work in parallel; the computation may also be outsource
to cloud servers.

In the experiments, we consider two performance metrics, measurement accuracy and computation over-
head. The measurement accuracy is represented by error ratio r, which is defined as

r =
|Nxy − nxy|

nxy
× 100%, (2.7)

whereNxy is the measured OD flow size between RSEs sx and sy, and nxy is the actual OD flow size. From
the definition, smaller error ratio r represents more accurate measurement result, and in turn, reflects better
performance of the scheme, and vice versa. The computation overhead is measured by time consumed by the
central server to perform the offline measurement of an OD flow size between two RSEs, which dominates
the overall measurement process. It is also obvious that lower computation overhead means higher efficiency
of the scheme, and vice versa.

The datasets used in the experiments are generated such that each vehicle ID or key is a 64-bit number,
and two RSEs, sx and sy, each store 10,000 vehicle records. There are 1,000 vehicles that pass both sx and
sy, i.e., the actual OD flow size between sx and sy is 1,000.

Our first scheme has an error ratio of 0% unless it does not respond to any key that it has seen before (for
privacy purpose as we have discussed in Section 2.4.4). Hence, our experiment only measures the time cost.
The enhanced scheme solves the problem of identical-key attack at the cost of higher computation overhead.
It has an error ratio of 0% only when the sampling probability is 100%. In our experiments, we vary the
sampling probability p from 0.1 to 1, with a step size of 0.1. For each sample probability, we randomly draw
a fraction p of all records from sx and do the same for sy. The offline measurement is performed over the
sampled subsets and the OD flow sizes are estimated by Equation 2.6. The time cost is measured and the
error ratio is computed from Equation 2.7. The process is repeated 10 times to show the statistic effect.

Table 1 and Figures 1-2 present our simulation results. Table 1 shows that the computation overhead of
the first scheme is around 1

4 of the second scheme when the sampling probability is 100%. The reason is that
the latter performs more hash operations. The two figures are drawn from the simulation results of the second
scheme. Figure 2.1 shows the mean and the standard deviation of the error ratio for OD flow measurement
under varied sampling probabilities. The length of each error bar is two times the standard deviation of the
error ratio, whose mean is at the center of the bar. We see that both mean and standard deviation of the error
ratio decrease with the increment of the sampling probability. Intuitively, when we increase the sample size,
the measurement result is likely to be more accurate. When the sampling probability equals 1, the error ratio
is 0% (as shown in the rightmost of the figure), which agrees with our theoretical prediction.

Figure 2.2 shows the average time taken by the central server to measure the OD flow size under each
sampling probability. It is clear that the computation overhead increases quadratically with the sampling
probability, which is also consistent to our analysis in Section 2.5.2.
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Table 2.1: Average computation overhead for the two proposed schemes.

First Scheme Second Scheme with Different Sampling Probabilities
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

time
(×104secs)

0.8575 0.0350 0.1453 0.3152 0.5813 0.8761 1.3059 1.7146 2.3234 2.8343 3.6370
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Figure 2.1: Mean and standard deviation of error ratios for OD flow measurement under different sampling
probabilities.
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Figure 2.2: Average time overhead for offline measurement under different sampling probabilities.
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Chapter 3

Differentiated Congestion Pricing of Urban
Transportation Networks via Connected
Vehicle Systems

3.1 Introduction

Price discrimination or differentiation is an economic concept defined by Dupuit [17] as a situation where
identical products are sold for different prices [58]. Pigou [48] later classified price discrimination into
three categories. First-degree price discrimination is the case where everyone pays his or her maximum
willingness-to-pay for the product. If the price of a unit of product depends on the number of units of
product being purchased, it is classified as second degree. Lastly, third-degree discrimination means that the
price of a unit of product can be different for different type of users.

Price discrimination is not uncommon in the transportation market. A good example for second-degree
discrimination is transit fare, when, e.g., a two-way ticket is cheaper than two one-way tickets, or the price
of a daily pass is independent of the number of rides taken by a passenger within one day. Moreover, some
transit agencies differentiate travelers by age and collect different fares for kids, students, adults and elder
people, which is an example of third-degree discrimination. Previous studies have discussed price discrimi-
nation in the context of congestion pricing. Wang et al. [59] and Lawphongpanich and Yin [37] investigated
nonlinear pricing, which is essentially an instance of second-degree discrimination where the amount of toll
depends on, not strictly proportional to, the distance traveled inside a tolling area. A case of third-degree
discrimination is investigated in [28], which differentiated users based on their vehicle type. Others, e.g.,
Small and Yan [54], Yang and Zhang [61], Yang and Huang [60], Yin and Yang [62], differentiated users
based on their values of travel time. de Palma and Lindsey [15] compared the effect of toll differentiation
based on the value of time and vehicle type on welfare. As pointed out by Pigou [48], third-degree price
discrimination generally requires an ability to distinguish different customer groups, i.e., there must be some
observable attributes associated with each group, unless the pricing scheme possesses a self-selection mech-
anism. Given that the value of time is not directly observable, it is not surprising to find little practice of
price differentiation with respect to the value of time.

This chapter discusses another third-degree differentiated pricing scheme that differentiates travelers
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with respect to their travel characteristics, i.e., origins, destinations, or paths that they traverse between their
origins and destinations. Although similar schemes may have been implemented in closed networks, e.g.,
tolled freeways, to our best knowledge, it has not been explored in an open, urban network environment
for the purpose of congestion mitigation. We note that the advancements of connected vehicle technologies
have technically enabled such price differentiation.

The contributions of this chapter are threefold. First, we use numerical examples to demonstrate the
potentials of price differentiation with respect to origin, origin-destination (OD) pair or path. The examples
show that in a first-best network condition where all the links are tollable, differentiated pricing can substan-
tially reduce travelers’ financial burden; in a second-best environment where only some links are tollable, it
helps achieve a lower level of congestion. Second, we formulate optimization models to determine optimal
differentiated pricing schemes for general networks. Third and more importantly, recognizing that price
differentiation with respect to travel characteristics may compromise travelers’ location privacy, we propose
an approach of modeling privacy, and then design an incentive program to provide incentives for travelers to
reveal their travel information and voluntarily participate in differentiated pricing. Such an opt-in program
is designed to create a win-win situation for both travelers and society.

The remainder of this chapter is organized as follows. Section 3.2 discusses different types of differ-
entiated pricing and their formulations, and presents numerical examples to make a case for differentiated
pricing. Section 3.3 discusses the location privacy issue associated with differentiated schemes, and pro-
poses an approach of modeling privacy. Section 3.4 is dedicated to the development of an incentive program
for differentiated pricing. Lastly, Section 3.5 concludes the chapter and discuss another way to mitigate
travelers’ privacy concerns.

3.2 Differentiated Pricing Schemes

Differentiated pricing schemes we discuss in this chapter include origin-specific, OD-specific and path-
based. As their names suggest, travelers on the same link will be charged differently, with respect to their
respective origin, OD pair or path. Intuitively, these schemes are more flexible than traditional anonymous
tolling. Mathematically, they can be viewed as different levels of relaxation to anonymous schemes.

To facilitate the presentation, we label the differentiation level of anonymous pricing as zero, and subse-
quently the levels of differentiation for origin-specific, OD-specific and path-based pricing as one, two and
three, respectively.

3.2.1 Notation

Let G(N,A) denote a transportation network, where N is the set of nodes and A is the set of directed links.
Index a is used to denote a link, which is also represented by its end nodes i, j ∈ N , i.e., (i, j) = a. For
link a, xa and γa are its aggregate flow and toll, respectively. The latter is expressed in the unit of time for
the sake of simplicity. Let W ⊆ N ×N be the set of OD pairs with strictly positive demand, w be the index
of its elements and dw be the demand of OD pair w. For every OD pair w ∈ W , o(w) represents its origin.
The set of all paths connecting OD pair w is denoted by Pw with its elements being indexed by p. A binary
paramete δ represents the link-path incidence, i.e., if link a is on path p, then δap is one; otherwise zero.
For every path p, fp and πp denote its flow and toll, respectively. Also, tp(.) and ta(.) are the travel time

21



22

for path p and link a, respectively. For second-best pricing, the set of tollable links is denoted by Ψ, and its
complement set Ψ̄ includes all the untollable links.

3.2.2 Formulations

As aforementioned, path-based pricing has the highest level of price differentiation, because the origin or
destination of a trip can be easily determined from the path utilized by the trip. Hence, a general path-
based formulation is used in this chapter to describe all three different schemes. Notice that origin-specific
and OD-specific pricing are link-based schemes, and thus the toll of each path is the sum of tolls on links
comprising the path. In contrast, path-based tolls may not be link-wise additive, because they are determined
for specific paths and may not be decomposable into link-based tolls.

We first discuss a first-best network condition where all links are tollable. In such an environment, even
with the lowest level of price differentiation, i.e., anonymous tolling, congestion pricing is able to induce
system optimum and replicate system optimum link flows (e.g., Hearn and Ramana [27]). Consequently,
the benefit of price differentiation can only be reflected on a secondary objective. In this chapter, we choose
revenue minimization as the secondary objective because it represents a financial burden to the traveling
public. Below, we formulate a program for finding a first-best path-based pricing scheme to minimize the
total toll revenue:

min
∑
w∈W

∑
p∈Pw

πpfp (3.1)

s.t. ∑
p∈Pw

fp = dw ∀w ∈W (3.2)

fp (tp (f) + πp − λw) = 0 ∀p ∈ Pw, w ∈W (3.3)

tp (f) + πp − λw ≥ 0 ∀p ∈ Pw, w ∈W (3.4)

fp ≥ 0 ∀p ∈ Pw, w ∈W (3.5)

πp ≥ 0 ∀p ∈ Pw, w ∈W (3.6)∑
w∈W

∑
p∈Pw

δapfp = x̄a ∀a ∈ A (3.7)

where x̄a is the system optimum link flow on link a. In the above, the objective function is to minimize total
toll revenue. Equation (3.2) is to ensure flow conservation; Equations (3.3) and (3.4) are tolled user equi-
librium conditions; Equations (3.5) and (3.6) specify non-negative path flow and toll, and the last constraint
requires link flows to replicate system optimum link flows.

The above formulation can be easily modified for the other two differentiated schemes. In origin-specific
and OD-specific schemes, tolls are imposed on links, but can be different for different origins or OD pairs.
In our formulation, we associate a superscript to toll variables, γ, to differentiate tolls. Subsequently, adding

22



23

the following constraints to the above model yields a formulation for origin-specific pricing:

πp =
∑
a∈A

δapγ
o(w)
a ∀p ∈ Pw, w ∈W (3.8)

γo(w)a ≥ 0 ∀a ∈ A,w ∈W (3.9)

where γo(w)a is the toll on link a for users from origin o(w).
Similarly, the formulation for OD-specific pricing can be obtained by adding the following constraints:

πp =
∑
a∈A

δapγ
w
a ∀p ∈ Pw, w ∈W

γwa ≥ 0 ∀a ∈ A,w ∈W

where γwa is the toll on link a for users of OD-pair w.
We now consider a second-best network condition where not all the links are tollable. In this case, anony-

mous tolling may not induce system optimum and thus price differentiation provides additional flexibility
to further reduce system travel time. Below we present a formulation to obtain a second-best origin-specific
pricing scheme that minimizes system travel time:

min
∑
w∈W

∑
p∈Pw

tp(f)fp (3.10)

s.t.

(3.2), (3.3), (3.4), (3.5), (3.8), (3.9)

γo(w)a = 0 ∀w ∈W,a ∈ Ψ̄ (3.11)

The OD-specific formulation can be developed similarly. Notice that because path-based pricing does not
impose tolls on links, it becomes irrelevant here.

Comparing the above with the first-best formulations, Equation (3.7) is no longer included because
system optimum link flows may not be achievable. In addition, because only specific links can be tolled,
Constraint (3.11) is added. We further note that link-based formulations for the origin-specific and OD-
specific schemes exist, but we do not present them to keep the chapter concise.

Because of Constraints (3.3)-(3.5), the formulations presented above all belong to the class of mathe-
matical programs with complementarity constraints (MPCC). These problems are non-convex and standard
stationary conditions, i.e., KKT conditions, may not hold for them because they do not satisfy Magasarian-
Fromovitz constraint qualification [52]. Many solution algorithms have been proposed for MPCC (see, e.g.
Luo et al. [42] and references cited therein). However, some only work well for small and medium problems
while others, especially those based on solving equivalent nonlinear programs (e.g., Lawphongpanich and
Yin [35]), can handle larger problems. More efficient algorithms may be developed to solve the above for-
mulations by exploring special properties or structures that they may possess. For example, Zangui et al. [65]
reformulated the first-best path-based pricing problem as a concave minimization problem and developed
an efficient algorithm to solve it.
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Figure 3.1: Nine-node network

3.2.3 Illustrative Examples

We now demonstrate the potentials of differentiated pricing schemes on a nine-node network. Figure 3.1
shows the network with four OD pairs [1, 3], [1, 4], [2, 3], and [2, 4], whose demands are 10, 20, 30 and 40,
respectively. The link performance functions are of the following form:

ta(xa) = Ta

(
1 + 0.15

(
xa
ba

)4
)

where Ta and ba are provided in Figure 3.1 as (Ta, ba) near each link .

Table 3.1: Differentiated pricing with all links tollable

Tolling Scheme
Toll Revenue OD Generalized Travel Cost

Amount Reduction [1, 3] [1, 4] [2, 3] [2, 4]
User Equilibrium - - 24.9 23.8 24.3 25.1

Anonymous 887.6 0% 30.6 29.2 33.0 31.6
Origin-specific 311.6 65% 23.4 29.3 25.8 24.4

OD-specific 295.6 67% 23.4 22.0 25.8 27.6
Path-based 263.6 70% 23.4 22.0 29.0 24.4

Table 3.1 presents the results1 of different levels of differentiation when all links are tollable. The
second and third columns show the minimum toll revenue of each scheme, and the percent reduction as
compared to the anonymous scheme. It can be observed that the toll revenue for all differentiated schemes
are substantially lower than that of anonymous pricing. Moreover, as the level of differentiation increases,
the revenue decreases. Particularly, price differentiation with respect to path yields a 70% reduction in
revenue. The last four columns present the equilibrium travel cost for each OD pair. Observe that other than

1Results are the best obtained ones, but likely local optima. This note applies to other tables in this chapter.
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OD-pair [1, 4] under origin-specific scheme, the travel costs under differentiated schemes are less than those
under the anonymous scheme, suggesting that differentiated pricing may be more appealing to individual
travelers in this network.

Table 3.2: Second-best differentiated pricing for nine-node network

Tolling Scheme
Total Travel Time OD Generalized Travel Cost
Amount Saving [1, 3] [1, 4] [2, 3] [2, 4]

User Equilibrium 2455.9 0% 24.9 23.8 24.3 25.1
Anonymous 2361.2 46.9% 25.8 24.9 25.1 25.9

Origin-specific 2306.1 74.2% 24.3 24.2 27.1 25.7
OD-specific 2281.7 86.2% 24.4 22.9 26.8 25.3

System Optimum 2253.9 100% - - - -

Table 3.2 presents the results of solving second-best differentiated pricing for the nine-node network,
when only links (5,7) and (7,3) are tollable. In this table, the second column shows the total system travel
time under each tolling scheme. Knowing that system optimum yields the smallest system travel time, we
present the third column as the ratio between travel time reduction from user equilibrium and the maximum
possible reduction, i.e., the difference in travel times of user equilibrium and system optimum. It is evident
that price differentiation leads to additional travel time reduction. Specifically, even with only two links be-
ing tollable, the OD-specific tolling scheme achieves 86.2% of the maximum possible reduction, a reduction
achieved by a first-best pricing scheme that may toll all links.

We also solved for differentiated schemes on the Sioux Falls network [38] as shown in Figure 3.2 and the
results are presented in Table 3.3. For second-best pricing, only the dashed links in Figure 3.2 are assumed to
be tollable. Table 3.3 shows that first-best differentiated pricing yields a substantial reduction in toll revenue,
while minimizing system travel time. Similarly, the second-best pricing schemes offer promising results.
Using system optimum as the benchmark, the additional travel time under user equilibrium is 2.859. The
origin-specific scheme can reduce the additional time to 1.117, which is equivalent to a 60.93% reduction.
Compared to anonymous tolling, origin-specific tolls can achieve twice the travel time saving.

Table 3.3: Differentiated pricing for Sioux Falls network

TollingScheme
First-best Second-best

Min. Revenue Reduction Travel Time Saving
Anonymous 23.441 0.00% 74.043 26.55%
Origin-specific 0.750 96.80% 73.060 60.93%
OD-specific 0.616 97.37% 72.997 63.13%
Path-based 0.182 99.23% - -
User Equilibrium - - 74.802 0.00%
System Optimum - - 71.943 100.00%

In general, for both the first-best and second-best conditions, higher levels of differentiation lead to
more favorable results. On the other hand, differentiated pricing schemes are more difficult to implement.
Such a trade-off needs to be investigated for a network of interest to determine whether a higher level of
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differentiation is worth implementing or not.

3.3 Location Privacy

One of the major reasons for the implementation difficulty of differentiated pricing is potential violation of
motorists’ location privacy. Location privacy is defined as the ability to prevent other parties from learning
one’s current or past location [11]. The issue of location privacy commonly arises when offering a ser-
vice requires some sort of location data. The issue has been mostly studied for situations where mobile
applications or computer programs need to know the location of a user (e.g., Cvrcek et al. [14]).

The traditional way of manually collecting toll preserves location privacy almost completely. Needless
to say, it is not an efficient way to collect toll, as vehicles have to stop and pay. Electronic toll collection
(ETC) systems have been built to make toll collection more efficient, but the way they currently operate
may compromise motorists’ privacy rights [51]. The systems often link motorists’ accounts and record
locations and times of transactions (e.g., the Sunpass prepaid toll program in Florida [22]). If toll gantries are
ubiquitous, the recorded transaction information may impinge on the privacy rights of motorists. However,
those who are concerned about their location privacy have the option to pay the toll by cash and avoid risk of
privacy disclosure. Moreover, for anonymous link-based tolling, it is possible to design a privacy-preserving
ETC system(e.g., Balasch et al. [8]) .

Unfortunately, it is difficult, if not impossible, to design a privacy-preserving differentiated pricing sys-
tem, because the system requires the knowledge of travelers’ travel characteristics such as the origin and
destination of each trip for an OD-specific scheme. Golle and Partridge [25] and Krumm [33] pointed out
that the home/work location data, even if they are anonymous, can be used to identify individuals. In addi-
tion to this, the sole fact of being tracked by the tolling system can cause inconvenience or discomfort. All
these privacy concerns need to be addressed.

On the other hand, there have been some indications that motorists, some at a price, are willing to provide
private information with the understanding that it will not be published and/or misused. For example, in the
Travel Choices Study completed by the Puget Sound Regional Council [49], each participant was given a
$1016 debit account with a GPS-based on-board unit installed on his car. This unit tracks and records when
and where the participants drive and deducts tolls from the account. The money remaining in each account
at the end of the study was given to the study participant. In this example, private information was collected
for the purpose of tolling and with full knowledge of study participants. We surmise that the participants
may be attracted to the $1016 incentive when joining the study.

Empirical experiments in the literature have proved that individuals value their location privacy dif-
ferently. They can be grouped into categories of privacy unconcerneds, privacy pragmatists, and privacy
fundamentalists [33]. The first group do not care about location privacy and are insensitive to the negative
consequences of location leak. The second group are willing to reveal their location for a, sometimes very
small, price, while the last group highly value and strive to protect their location privacy. Mathematically, we
can use a distribution to represent different individual valuations of privacy across the population. Acquisti
et al. [5] suggested a U-shaped distribution, but cautioned that the value of privacy can be very malleable and
many non-normative factors may affect this distribution (also see Cvrcek et al. [14]). Hence, we base our
models not on any specific, but on a general, distribution for value of privacy. Nevertheless, it is important
to understand the implication of a proposed distribution. As an example, Figure 3.3 shows the probability
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density function of logistic distributions with different parameters, which offer computational advantages as
we have seen in the choice modeling literature. However, a logistic distribution implies that some users will
have a negative value of privacy, an unjustifiable assumption.

θ
0

ξ(θ)

Figure 3.3: Logistic distributions with different parameters

Figure 3.4 illustrates more reasonable uniform and exponential distributions, both with a mean of two.
In this figure, U(0, 4) denotes a uniform distribution between 0 and 4, and EXP (0.5) is an exponential
distribution with a parameter of 0.5. Notice that the exponential distribution is more clustered around smaller
values, which implies that more users value their privacy less. But, as illustrated in Figure 3.5, exponential
distributions with higher mean values become more evenly distributed. Also notice that the span for an
exponential distribution is all nonnegative real numbers, while the uniform distribution is bounded on both
sides. So, uniform distribution implies that the value of privacy of travelers is evenly distributed and has
an upper bound. On the other hand, the exponential distribution suggests that some travelers are extreme
privacy fundamentalists and will not disclose their locations at any price.

θ

ξ(θ)

ξ ∼ EXP (0.5)

0.25

0.50

ξ ∼ U(0, 4)

42

Figure 3.4: Uniform and exponential distributions with same mean, E(θ) = 2

3.3.1 Modeling Privacy

We now use origin-specific pricing as an example for modeling privacy. Denote the travel cost between OD
pair w under the scheme as λw,1, which consists of travel time and toll. Since they are being tracked, mo-
torists incur additional cost for the loss of their location privacy, which we call privacy cost. Mathematically,
the full cost for a traveler between OD pair w under origin-specific pricing is λw,1 +β, where β is a random
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Figure 3.6: Expected privacy cost

variable representing the value of privacy, which is also expressed in the unit of time for simplicity. In this
chapter, we assume the distribution of value of privacy is the same for travelers from each OD pair, but this
assumption can easily be relaxed.

Suppose the value of privacy follows a known distribution ξ, i.e., β ∼ ξ. Define Ξ(θ) =
∫ θ
0 ξ(z)dz as the

cumulative distribution function associated with the value of privacy, i.e., Prob(β ≤ θ) = Ξ(θ). Denote the
travel cost between OD pair w under anonymous tolling as λw,0 and let θw = λw,0−λw,1. If θw is negative,
no one prefers the origin-specific scheme. As we observe from Tables 1 and 2, θw is likely positive. In
this case, travelers who value their privacy less than θw would prefer the origin-specific scheme to the
anonymous one, while those with higher value of privacy would prefer anonymous tolling. The percentage
of the former is Ξ(θw) while it is 1−Ξ(θw) for the latter. Figure 3.6 illustrates this situation for a hypothetical
distribution of the value of privacy, where the shaded area represents the percentage of travelers who will
be better off and thus prefer the origin-specific scheme. Their total privacy cost, denoted as PCw(θw), can
be computed as follows: PCw(θw) =

∫ θw
0 dwξ(z)zdz, where dw is the total demand between OD pair w.

Define E(β; θw) =
∫ θw
0 zξ(z)dz, and the equation is thus written as PCw(θw) = dwE(β; θw). We will use

this in Section 3.4.
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3.3.2 Note on General Distributions

The calculations of Ξ(θ) and E(β; θ) involve integration. If the value of privacy follows a uniform or an
exponential distribution, the integrals will have a closed form as shown in Table 3.4.

Table 3.4: Descriptors for uniform and exponential distributions of value of privacy
U(0, α) EXP (α)

ξ(θ) 1/α αe−αθ

Ξ(θ) θ/α 1− e−αθ
E(β; θ) θ2/α (1− e−αθ(αθ + 1))/α

In a general case where the integrals do not have a closed form, we need to compute them via numerical
integration methods. One of these methods is Riemann sum, which approximates the area under a curve by
vertical bars as illustrated in Figure 3.7. Here, we use the following Riemann sums to approximate the value
of integrals:

Ξ(θ) =

∫ θ

0
ξ(z)dz =

1

n
θ

n∑
i=1

ξ(
iθ

n
)

E(β; θ) =

∫ θ

0
zξ(z)dz =

1

n
θ

n∑
i=1

(
iθw
n
ξ(
iθ

n
)

)
where n is the number of bars. Choosing a larger n would result in a higher precision.

θ

ξ(θ)

Figure 3.7: Riemann approximation for integral (n=7)

3.3.3 Privacy Analysis of Differentiated Schemes

In this section, we examine the results of the nine-node network in Section 3.2.3 from a privacy perspective.
Table 3.5 calculates the percentages of travelers between each OD pair who would benefit from origin-
specific pricing after considering privacy cost, i.e., 100Ξ(θw), under different hypothetical distributions for
the value of privacy.

The third row of Table 3.5 shows the saving of time and toll for travelers between each OD pair, i.e. θw =
λw,0 − λw,1. It can be observed that, even if the average value of privacy is high, some travelers still benefit
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Table 3.5: Percentage of travelers who benefit from origin-specific pricing on nine-node network
Network Condition First-best Second-best
OD pair [1,3] [1,4] [2,3] [2,4] [1,3] [1,4] [2,3] [2,4]
Travel Cost Saving 7.2 -0.1 7.2 7.2 1.5 0.7 -2.0 0.2
β ∼ U(0, 4) 100.00 0.00 100.00 100.00 37.50 17.50 0.00 5.00
β ∼ U(0, 8) 90.00 0.00 90.00 90.00 18.75 8.75 0.00 2.50
β ∼ U(0, 16) 45.00 0.00 45.00 45.00 9.37 4.38 0.00 1.25
β ∼ EXP (0.500) 97.27 0.00 97.27 97.27 52.76 29.53 0.00 9.52
β ∼ EXP (0.250) 83.47 0.00 83.47 83.47 31.27 16.05 0.00 4.88
β ∼ EXP (0.125) 59.34 0.00 59.34 59.34 17.10 8.38 0.00 2.47

from differentiated schemes. However, the percentage decreases as the average value of privacy increases.
Also observe that when travel cost saving is small, exponential distributions predict higher percentages of
users who will benefit from differentiated schemes, because the distributions are more clustered around
smaller values.

Apparently, the savings of time and toll that some travelers enjoy from differentiated schemes are offset
by the loss of their privacy. Section 3.4 presents a way to take advantage of the potentials of differentiated
pricing, while allowing those concerned travelers to maintain their privacy.

3.4 Addressing Privacy Concerns with an Incentive Program

Recognizing that some may benefit from differentiated schemes while others with higher value of privacy
may be better off under anonymous tolling, we propose to develop an incentive program for travelers to opt
in to differentiated pricing. More specifically, a hybrid of anonymous and differentiated pricing schemes
will be implemented on the network. Travelers who choose to reveal their private information will pay
differentiated tolls while those who remain anonymous will pay uniform tolls.

Since travel costs (time plus toll) in differentiated schemes are generally less than those in the anonymous
scheme, the cost savings can be viewed as incentives for drivers to participate in differentiated pricing.
Although other incentives, such as subsidies or credits, can be provided, below we focus on designing
anonymous and differentiated tolls in the hybrid scheme and allowing for the cost savings as incentives. The
overall goal of this hybrid scheme is to create a win-win situation for both users and society.

3.4.1 Design of Incentive Program

As an example, we design the incentive program for a hybrid of origin-specific and anonymous tolls. The
formulations for other hybrid schemes can be developed with some straightforward modifications and we
do not present them to keep the chapter concise.

It is reasonable to assume all the motorists who are better off under an origin-specific scheme will opt
in to this scheme. Thus, the number of these motorists will be dw,1 = Ξ(λw,0 − λw,1)dw. Travelers who
choose the anonymous scheme will not incur any privacy cost. Hence, the total privacy cost for travelers
between OD pair w is equal to PCw(λw,0 − λw,1).
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The following constraints define the feasible region of the problem:

dw,0 + dw,1 = dw ∀w ∈W (3.12)∑
p∈Pw

fp,c = dw,c ∀w ∈W, c ∈ C (3.13)

dw,1 = Ξ(λw,0 − λw,1)dw ∀w ∈W (3.14)

fp,c (tp (f) + πp,c − λw,c) = 0 ∀p ∈ Pw, w ∈W, c ∈ C (3.15)

tp (f) + πp,c − λw,c ≥ 0 ∀p ∈ Pw, w ∈W, c ∈ C (3.16)

λw,0 ≥ λw,1 ∀w ∈W (3.17)

fp,c ≥ 0 ∀p ∈ Pw, w ∈W, c ∈ C (3.18)

πp,c ≥ 0 ∀p ∈ Pw, w ∈W, c ∈ C (3.19)

πp,0 =
∑
a∈A

δapγa ∀p ∈ Pw, w ∈W (3.20)

γa ≥ 0 ∀a ∈ A (3.21)

πp,1 =
∑
a∈A

δapγ
o(w)
a ∀p ∈ Pw, w ∈W (3.22)

γo(w)a ≥ 0 ∀a ∈ A,w ∈W (3.23)

where C = {0, 1}. Constraints (3.12) and (3.14) split the demand for each OD pair. Constraint (3.13)
ensures flow balance. The tolled user equilibrium is guaranteed by Constraints (3.15) and (3.16). Constraint
(3.17) requires travel cost (time plus toll) in the origin-specific scheme to be less than that in the anonymous
scheme. Constraints (3.20) and (3.22) make the toll on each path to be equal to the sum of link tolls. Denote
the feasible region defined by the above constraints as Φ.

We first discuss the problem of finding the optimal hybrid scheme in the first-best network setting where
all the links are tollable. In this situation, we are interested in replicating the flow distribution with minimum
system travel time as well as minimizing the sum of toll revenue and privacy cost as a secondary objective.
The following is the total (full) user cost:

∑
w∈W

PCw(λw,0 − λw,1) +
∑
p∈Pw

(πp,0fp,0 + πp,1fp,1)

+
∑
a∈A

xata(xa)

Since xa = x̄a has to be achieved in first-best pricing, the last term is a constant and can be omitted from
the optimization. Consequently, we have the following formulation for finding an optimal hybrid scheme in
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a network with all links being tollable:

min
∑
w∈W

PCw(λw,0 − λw,1) +
∑
p∈Pw

(πp,0fp,0 + πp,1fp,1)

 (3.24)

s.t.

(f, d, π, λ) ∈ Φ∑
w∈W

∑
p∈Pw

δa,p (fp,0 + fp,1) = x̄a ∀a ∈ A

where the last constraint is to ensure the link flows to be the least-system-time flows.
We now consider a second-best situation when only some links are tollable. In this situation, we attempt

to minimize total system cost, which differs from the above total (full) user cost by the toll revenue, because
the revenue is not a cost for the system but a transfer from travelers to the government. The problem of
finding an optimal hybrid scheme can be formulated as follows:

min
∑
w∈W

PCw(λw,0 − λw,1) +
∑
p∈Pw

tp(f)fp

 (3.25)

s.t.

(f, d, π, λ) ∈ Φ

γo(w)a = 0 ∀w ∈W,a ∈ Ψ̄

The last constraint ensures that only tollable links can have positive amount of toll.
Notice that the above formulations are path-based, and solving them requires path enumeration. How-

ever, it is possible to formulate them as link-based models. We use the above path-based formulations to
facilitate the presentation.

3.4.2 Numerical Examples

The proposed models for designing the incentive program of the origin-specific scheme were implemented
on the nine-node and Sioux Falls networks. Each model was solved for both uniform and exponential
distributions of value of privacy, each with three different expected values.

Table 3.6 presents the results on the nine-node network of Figure 3.1 with all the links being tollable.
The performances of the hybrid schemes are also compared with those of the anonymous and origin-specific
tolls when implemented separately.

As pointed out previously, origin-specific pricing can reduce the toll revenue significantly in a first-
best network condition. However, this reduction comes with a price of violating travelers’ privacy. Since
origin-specific schemes require all the users to reveal their origin information, the privacy cost is equal to
the expected value of privacy times the total demand. The privacy cost increases as travelers value their
privacy more, eventually causing the total user cost under origin-specific pricing to be larger than that under
anonymous tolling, when the expected value of privacy is equal to 8. In contrast, the hybrid scheme offers
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Table 3.6: Comparison of different schemes on nine-node network (all links tollable)
Pricing Scheme Distribution of β E(β) Toll Rev. Privacy Cost Total User Cost
Anonymous - - 887.60 0.00 887.60

Origin-specific
- 2 311.60 200.00 511.60
- 4 311.60 400.00 711.60
- 8 311.60 800.00 1111.60

Hybrid

U(0, 4) 2 247.82 28.46 276.28
U(0, 8) 4 235.25 58.47 293.72
U(0, 16) 8 220.76 116.96 337.72

EXP (0.500) 2 249.84 17.49 267.33
EXP (0.250) 4 237.43 35.52 272.95
EXP (0.125) 8 213.08 71.02 284.10

an option for travelers of high value of privacy to remain anonymous. Such a self-selection mechanism
leads to much less loss of privacy and subsequently less total user cost. Interestingly, in this example, the
hybrid schemes also lead to less amount of toll revenue than their origin-specific counterparts. However,
this observation need not be generally true.

Table 3.7: Comparison of different schemes on nine-node network (two tollable links)
Pricing Scheme Distribution of β E(β) Travel Time Privacy Cost Total System Cost
Anonymous - - 2361.16 0.00 2361.16

Origin-specific
- 2 2306.10 200.00 2506.10
- 4 2306.10 400.00 2706.10
- 8 2306.10 800.00 3106.10

Hybrid

U(0, 4) 2 2291.79 9.13 2300.92
U(0, 8) 4 2296.76 13.08 2309.84
U(0, 16) 8 2304.63 17.57 2322.20

EXP (0.500) 2 2291.45 5.82 2297.27
EXP (0.250) 4 2293.47 9.56 2303.04
EXP (0.125) 8 2299.10 13.30 2312.40

We solved for the anonymous, origin-specific and hybrid schemes on the nine-node network when only
two specific links, (5,7) and (7,3), are tollable. Table 3.7 displays the results for each scheme. As expected,
in every case, the total cost under the hybrid scheme is less than those in the anonymous and origin-specific
schemes. Interestingly, the hybrid schemes also yield even less total travel time than the origin-specific
scheme, even though the latter is to minimize total travel time while the former is to minimize the total
travel time plus privacy cost. This is not surprising because mathematically, the feasible regions of these
two models are not the same; and intuitively, a hybrid scheme provides an additional dimension of flexibility.
However, this observation does not necessarily apply to other networks. Also, notice that the total privacy
cost associated with the uniform distribution is higher than exponential distribution with the same expected
value.
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Table 3.8: Second-best hybrid schemes on Sioux Falls network
Pricing Scheme Distribution of β E(β) Travel Time Privacy Cost Total System Cost
Anonymous - - 74.043 0.000 74.043

Origin-specific
- 0.02 73.060 7.212 80.272
- 0.04 73.060 14.424 87.474
- 0.08 73.060 28.848 101.908

Hybrid

U(0, 0.04) 0.02 73.294 0.118 73.412
U(0, 0.08) 0.04 73.421 0.138 73.421
U(0, 0.16) 0.08 73.591 0.163 73.753
EXP (50.0) 0.02 73.272 0.086 73.357
EXP (25.0) 0.04 73.355 0.106 73.461
EXP (12.5) 0.08 73.455 0.163 73.618

To demonstrate the models on a more realistic network, we solved them on the Sioux Falls network
where the tollable links are the dashed ones in Figure 3.2. The obtained results are presented in Table
3.8. Similar to the nine-node network, the privacy cost and total cost increase as the expected value of
privacy increases. Also, the privacy cost and total cost under the exponential distributions is less than those
associated with the uniform distributions.

The results in this section illustrate the potentials of the incentive program for origin-specific pricing.
For two extreme cases, with the value of privacy being zero or infinity, the hybrid scheme yields the same
results as differentiated or anonymous scheme, respectively. But, in the real world, this value should be finite
and positive. Our results indicate that the performance of the incentive program is much better when the
expected value of privacy is relatively low, i.e., more users are willing to reveal their information for a small
amount of money (previous empirical studies seem suggest so). The incentive program also demonstrates
promising results when the expected value of privacy is relatively higher. While this section only focuses on
a hybrid of origin-specific and anonymous tolls, we expect other hybrids to perform favorably in a similar
fashion.
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Chapter 4

Conclusion and Discussion

In this report, we have discussed “point-to-point” traffic volume monitoring under the context of connected
vehicle systems. To protect drivers’ location privacy, we have formalized the problem of secure OD flow
measurement with a realistic threat model. We have proposed a novel secure OD flow measurement scheme
that exploits the nice properties of commutative one-way hash functions to protect drivers’ privacy. Our
solution allows the authority to collect “statistical” OD flow information, but prevents it from learning
identities of “individual” vehicles. We have used sampling to improve computation efficiency without sig-
nificantly degrading measurement accuracy. Simulations have demonstrated the feasibility and scalability
of our scheme.

This report has also explored a new class of tolling schemes that charge different amount of toll for
users with different origins, destinations, or paths. These schemes provide more flexibility than traditional
anonymous pricing and the numerical examples in this report have demonstrated that they can reduce the
financial burden on motorists in a first-best network condition or lead to more travel time saving in a second-
best condition.

Recognizing that the differentiated pricing may compromise travelers’ privacy, we have proposed an
incentive program to allow travelers to opt in to the differentiated pricing, if they find the amount of incentive
to worth disclosing their location information. This self-selection mechanism allows the tolling agency to
take (potential) advantages of differentiated pricing without doing harm to travelers’ privacy rights.

Other approaches can be explored to mitigate privacy concerns associated with differentiated pricing.
For instance, instead of charging users based on their true origins, the tolling agency can designate a tolling
area and then charge users based on where they enter the area. Because the true origins are not revealed,
this scheme may partially mitigate travelers’ privacy concern. Note that this scheme is different from the
traditional cordon pricing in which motorists pay a uniform toll to cross the cordon. In the refined scheme,
motorists on a link within the tolling area will pay different amount of toll depending on where they enter
the tolling area. We call this scheme as a sub-network origin-specific pricing scheme. To illustrate the
concept, consider the network in Figure 4.1 where the tolling area consists of the dashed links. Consider
three different paths, p1 : 2 → 6 → 5 → 7 → 3, p2 : 2 → 1 → 5 → 7 → 3, and p3 : 1 → 5 → 7 → 3.
While in the original origin-specific scheme, travelers on p1 and p2 will pay the same amount of toll on link
(5,7), they may pay different amount of toll for traversing the link under the refined scheme, because they
enter the tolled sub-network from different nodes (Nodes 6 and 5 respectively). Also, unlike in the original
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Figure 4.1: An illustrative network

origin-specific pricing, motorists on p2 and p3 will pay the same amount of toll for link (5,7) because they
both enter the sub-network from Node 5.

We implemented the sub-network origin-specific scheme for the Sioux Falls network (Fig. 3.2), where
the tolling area consists of dashed links and nodes 10, 11, 14, 15, 17 and 19. The best design yields a
system travel time of 73.215, which is slightly greater than the system travel time of 73.060 under the
true origin-specific scheme. In this case, the refined sub-network origin-specific pricing is very promising.
An interesting future study can be conducted to explore how to select the tolling area to achieve a similar
performance as the true origin-specific tolling.
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